Data-Driven Healthcare Transformation — How COVID-19 is changing that

srinivasan sankar
4 min readApr 28, 2020

COVID-19 is the prescription for how data and analytics will shape the future of healthcare delivery in the United States. We are all familiar with the Moneyball concept and how it transformed professional sports over the course of the past two decades — with an assist from Brad Pitt. Applying this same thinking to healthcare, when we have systems in place for collecting and analyzing the data, we can use those insights to transform healthcare.

Data and technology had transformed industries ranging from professional sports to financial services. Disruption is messy. There’s a lot of uncertainty in figuring out how technology like artificial intelligence and machine learning can impact healthcare. It's surprising to see the resistance in healthcare to using data and technology.

Data-driven practices can be employed to improve and transform the healthcare system today. Patient management as an area of visible change, the availability of data and analytics are transforming patient management at a revolutionary pace, starting with electronic health records (EHR’s). Physicians now have hundreds of thousands of patient data points at the touch of their fingertips. EHRs are also becoming smarter, no longer just massive data repositories of clinical notes, lab values, and radiology reports. EHR’s are slowly being enhanced to help doctors identify patients who are due for routine cancer screenings or who are at risk for disease.

COVID-19 and Data-driven healthcare is transforming medicine from a reactive practice to a proactive one

Data and analytics are also transforming how doctors practice medicine, noting advances in telemedicine, remote care, and wearable and connected devices. We have seen a massive shift to remote care and telemedicine during COVID-19. Data-driven initiatives are also helping healthcare systems and hospitals become more efficient as they navigate value-based reimbursement.

Drug discovery and drug repositioning are additional areas that are benefitting from data and analytics. Historically, drug development could take decades at great expense. Today, computers using AI can screen thousands of virtual molecules against libraries to identify those that have the best chances for success.

Many best practices and lessons learned from COVID-19

Though scientists, epidemiologists, and public health experts have access to massive amounts of data, the models are only as good as the data feeding them. Data which was available at the start of the COVID-19 outbreak was both incomplete and insufficient to account for the many permutations of social distancing and shifting quarantine policies. This was magnified by a pathogen of yet-undetermined virulence, operating against a patchwork of healthcare infrastructure of varying quality. When we consider the number of variables to get an accurate projection of how many hospitalizations, how many deaths, how long the social distancing needs to last, when this will be over — well, it is just mind-boggling.

One of the most important successes from COVID-19 has been the incredible speed with which the international scientific community has been able to sequence the viral genome. A team of virus evolution experts are analyzing the growing collection of genomes in a project called Nextstrain. They continually update the virus family tree. Enabled by data from GISAID. The response of the scientific community will help us better understand the virus and predict how it will behave based on its similarities and differences with other viruses. This will have an impact on future resource allocation and logistics.

The COVID-19 outbreak offers some valuable lessons by presenting a potential playbook for the next time a pandemic threatens the U.S. and the world. The data that we are capturing now, from how many ventilators were needed at a hospital at the peak, to the true impact of social distancing on mortality, can be used to help scientists develop more accurate models in the future.

The COVID-19 pandemic will have a long-lasting effect on the healthcare industry, with new potential for digital health initiatives and data-sharing to help patients and public health surveillance

Only recently have patients been able to access their medical records through online patient portals. Hospitals can be expected to standardize data definitions so regulators such as the CDC can access data more rapidly for monitoring public health emergencies. If people define the data differently, then we can’t aggregate it. And just collecting the data when it isn’t standardized doesn’t get us very far. The classic data preparation challenge.

We see data-driven initiatives in some unexpected places, such as rural hospitals that are leveraging the power of data and analytics to help weather the incredible financial and staffing challenges they face. Data and analytics will become increasingly central to the future of healthcare management, predicting that future pandemics will play out with better models that have been built on the data and lessons of COVID-19.

For further reading and understanding of how data and analytics will shape the future of healthcare delivery in the United States, read this 2017 book MoneyBall Medicine: Thriving in the New Data-Driven Healthcare Market by author Harry Glorikian



srinivasan sankar

Chief Data & Analytics Officer #CDO #CDAO|#AI #BigData #DataScience #Analytics #MachineLearning #NLP|#Politics #Movies #Reading|6x #SuperBowl #Patriots #RedSox